ANALYTIC SOLUTION OF THE UNSTEADY INVERSE
HEAT-CONDUCTION PROBLEM
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An algorithm is given for an approximate analytic solution of the unsteady inverse heat-condue-
tion problem for infinite and semi-infinite objects. The solution found in this manner is used
to solve a special inverse problem of free diffusion.

The number of heat-conduction problems, both forward and inverse, which can be solved in finite
form is extremely limited. This circumstance prevents the widespread use of analytic methods for ap~
proximately solving the inverse problem; in certain cases these methods greatly simplify the calculation
process. Consequently, there is definite interest in searching for new exact solutions of the inverse prob-
lems.

In the present paper we are concerned with the analytic solution of two inverse problems. The first
deals with the classical type of inverse heat-conduction problems [2]; the second arises in the solution of
problems of diffuse scattering and is of a specialized nature. However, by virtue of the analogy between
heat conduction and diffusion, the results can be automatically applied to the similar heat-conduction prob-
lem.

For simplicity we restrict the analysis to the linear case. We first outline the analytic method for
approximately finding the temperature T(x, 7¢) = f(x) within an infinite heat-insulating rod at any time 7,
< 7 on the basis of a specified temperature distribution T(x, 7) at time T, assuming that the thermal dif-
fusivity a is 2 known constant and that there are no heat sources. For this purpose we first examine the
corresponding direct problem: that of determining the temperature T(x, 7) at time v from the known tem-
perature distribution at an earlier time 7, (without any loss of generality we can assume 7=0 as we do
below). The solution of this problem, according to [3], is given by the integral equation

Tl 9= S £ exp[ = :'dg. 1)

An approximate solution of this problem can be constructed with the help of a convenient approximation of
the function £(§):

L
FE) = X A0, 6. 2)

n==0

Now (1) is integrable in terms of elementary functions. From the mathematical standpoint the system

¥ = {;(®}=, should be chosen such that the function in (2) can be used, with an appropriate choice of the
number L of real parameters A, in this faction and with an appropriate choice of the values of these param-
eters, to achieve an arbitrarily exact description of any temperature distribution f(§). This requirement is

satisfied, e.g., by the system of algebraic monomials

¥ = {E, @
whose linear shells
L
PE= DA%t
® =24 @)
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give a uniform approximation of dny continuous function. Assuming f(§) = P(§) and using the tabulated equa-
tions of [4], we write the integral representation in (1) and the function T in the finite form

L .
TP (x, 1) =T(x, 1) }f=p = 2 An(Pn (x, ), (5)
n=0
where
.
Pp (%, 0) = X, (8 + 20)(2h — 20 — 1)o7 0+, ©)

=0

5= { 0, n— forn even 6 = v % x:E(_’i_); E (k) = entier (k);
1, 7~ forn odd 2

(—D = 1.

The algorithm for the approximate solution of this inverse problem is based on the solution of (5) for
the forward problem and is extremely simple. We specify a sufficiently high order L and approximate the
function T(x, 7) by the polynomial Tp(x, 7) with the necessary accuracy. Then the coefficients of the re-
sulting polynomial are simultaneousgly the corresponding coefficients of the polynomial P({) with the neces-
sary accuracy. Then the coefficients of the resulting polynomial are simultaneously the corresponding
coefficients of the polynomial P(), completely determining it in the linear combination 4}).

The uniqueness of the solution in the class of polynomials is obvious. We turn now to the sclution of
the following inverse problem. We replace T, f, anda by C, Cy, and D, respectively, adopting the standard
notation of diffusion theory. Then Eq. (1) describes the free one-dimensional diffusion of a material in an
unbounded space, while the quantity ¢ =v2D7 represents the mean square distance of particles which have
undergone diffusion for a time 7 from their initial position. We further assume that ¢ is not known but that,
along with the distribution C(x, o), the value of the unknown function Cy(é) is given at some point £ on the
interval (—=, ©). The mathematical formulation of this problem is as follows: We are to find the solution of
the integral equation

_ 1 f =y
Cts, 0= = 5 co@)exp[ = ]d& o

with the unknown parameter ¢ under the condition
Cy &) = CO, € (—o0, oo}, (8)

This unusual formulation of the inverse problem has found important applications in interpreting the diffuse
halos which develop on flat and convex slopes above deposits of rare and nonferrous metals {5, 6]. In this
case the known distribution C(x, o) of the chemical element in question in recent porous formations is used
to predict the distribution of this element in early bedrock, Cy(8). Sampling of a natural or artificial out-
crop of this bedrock at some point yields the value of C®). The parameter o is not known to the investiga-
tor.

The solution of the problem is greatly complicated by the uncertainty regarding the parameter o,
which appears in Eq. (7) in a nonlinear manner. This circumstance makes it necessary to carry out a
special study of the single-valuedness of the solution and, in particular, hinders a numerical solution of
Eq. (7) by the known regularization methods. The iterative method for seeking a solution by the net meth-
od, with variation of o over some plausible range, on the other hand, is extremely laborious. Furthermore,
replacement of the original operator by an approximating operator introduces a large error into the result
of the solution of the inverse problem.

We will also examine the single-valuedness of the solution of problem (7), (8) in the class of algebraic
polynomials, and in this connection we will give an efficient algorithm for an approximate analytic solution
for this problem based on the polynomial approximation (4) of the unknown function Cy(#). At first we simply
note that, without restriction (8), Eq. (7) has an infinite set of solutions. The two different polynomials

L, L
CIE) = DA (o) FandCP @) = X, AP (6 & ©)
. i=0

=0
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Fig. 1. Dlustrative solution of problem (7), (8) {in arbitrary units).

1) Theoretical concentration distribution C,¢); 2) theoretical concen-
tration d‘iwstribution C(x); 3) "observed' distribution following concen-
trations C(x); 4) algebraic polynomial C}¢) (o = 0.52) which is the
optimum approximation of the function Cy{); 5) trigonometric poly-
nomial C§(¢) (c= 0.58) which is the optimum approximation of the func-
tion Cy(f).

are mapped by integral transformation (7) into the same function C(x) if and only if

— T 1) — A2 1) — AR
L2 - Ll" L A(L) - A}_), Afr.—)l - A(le

& (26 4 |
ap = ap + 3 (7 @e— vnag, o — ag o, 9
u:E(L_;_f), j=L—2 L—3 ....21,0.

Recurrence relations (10) determine a nondenumerable family of solutions of Eq. (7).

We now assume that Cy(£) belongs to the class of algebraic polynomials and that the initial data C(x)
and C° are not "burdened" with a random component. Without any loss of generality we can also assume
that we know the degree L of polynomial Cy(). Specifying an arbitrary value o = ¢, > 0, we expand the func-
tion C(x) in terms of the components ¢y {x, d;) (n = 0, L) without a residue, and we determine the unique
solution C4(§, @) of Eq. (7) for a fixed value of 0. In general, the curve Cy(, oy} does not pass through the
point (&, C(U)) and thus is not a solution of problem (7), (8); we denote this solution by C,(%, ¢), and we de-

note the coefficients of the polynomial Cy(£, o) by Bj(o). Then we have the equation
. .
D& (B, (6)— A, 00) + CoEyr 0) —C© = 0. (11)
§=0
Using recurrence relations (10) we can express the unknowns Bj in terms of ¢ and the known quantities
Ai("o) and g,. Then Eq. (11) is an equation for the parameter ¢ and can be transformed after some mani-
pulation to the form

E Wm02m= 0, (12)

where

( L
V' £n(S( — A, (09) + Co gy Gg) —CO, m=0,
) n=>0
Wm = { L—2m
l 2 Sm, m>1,
n=0
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P, t=0,

L
Poat 2 (=R, ,;, 1<t<EM—1,

Sg”) = v—1 )]
4,2 (1K, L—n—even |
{=:0
eyt t=E(v),
A 2‘5 (—1)iK;, (L —n)— odd ’
QE(‘V), nt i = Oy

Ki=ia (Qi,,n)’ i=1,
G (T (Tis (- (Tiia (T, (Qii.n))) S, i1,
Qt,n’ i=1,
Ryj=:{PeQ, ), =2
i Pt (T (Tia (-0 (T (T (jS.n)))v i>2,

Here Ti,s’ Pt i» and gq; are summation operators,

jg1

Ty )= EQ;'S [—sFtnteipei-2s
js=l —

i—ikl

RN
Pi,; (4) = 4.«1 Qt—i—fz+2,rz+2j2+2£—4u’
© =
E(v)—i
q; )= _21 QE(v)—i—j,-s-l,n+2f,+2i_2”r

=

so that R¢ j and K; are finite chains of the enclosed sums, in which the upper limit on the summation in each
sum is set by the running value of the summation index of the preceding sum:

() .

o L
Qk,s=(2 P )er—nn = A B Qo v="5"
===]

Equation (12) is algebraic. Let us determine its positive roots; there are no more than E(I/2) of
them, and any one of them is the desired result. We substitute the values found for ¢ into recurrence rela-
tions (10) and find a finite number of solutions of problem (7), (8). Discarding some of these solutions on
physical grounds [the concentration of the material over the interval (—e«, «) being steadied is nonnegative
and does not exceed 100%], we find that in general there are N = E(L/2) equiprobable solutions of Eq. (7)
under condition (8).

Accordingly, even if we know the value of the desired concentration C,() at some point £, we do not
eliminate the ambiguity from the solution of problem (7), (8). However, condition (8) does significantly re-
strict the spectrum of solutions of Eq. (7), permitting us to distinguish from the nondenumerable set of such
solutions a finite number (perhaps only one).

It is not difficult to see that in addition o proving the boundedness of the solution of (7), (8) in the
class of polynomials we have also studied an efficient algorithm for seeking an approximate analytic solu-
tion of this problem. This algorithm requires simply a single solution of Eq. (7); then the entire spectrum
of allowed values of C} (¢) is determined as consisting of the roots of an algebraic equation. To find the
corresponding values of the approximating functions C(x) on the other hand, it is not necessary to solve
Eq. (7). It is simply necessary to emphasize that in practice the function C(x) is usually specified in a dis-
crete manner, so that the order L of the approximating polynomial C}() is bounded [if only by the humber
of points at which C(x) is measured]. Furthermore, the function C(x) contains a random component, and the
desired distribution Cy) is, generally speaking, not a polynomial. Hence we can draw the following con-
clusions:
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1) Equation (12) may not contain solutions satisfactory for our purposes (N = 0). In this case we can
choose that branch of the solution of Eq. (7) which is closest to c(® at the point £, as the desired solution.

2) On the other hand, there may be more than one possible golution (N >1). In this case a unique solu-
tion can be chosen by imposing, e.g., the requirement: that the solution be smooth.

3) Since the class of algebraic polynomials does not exhaust the set of all continuous functions, the
algorithm described here for approximately solving problem (6), (7) should be classified as one of the so-
called algorithms for solving the inverse problem by the trial and error method; such algorithms permit
us to seek at least one (but not necessarily all) of the solutions of the problem.

4) Since the inverse heat-conduction problem is incorrect in the Hadamard sense, an increase in the
degree of the polynomial approximating the input function C(x) leads to the absence of a continuous de-
pendence of the solution on the input data. In this case the resulting solution must be regularized, as
shown, e.g., by Alifanov [1].

Without any particular difficulfy the results obtained above can be generalized to the cases of two-di-
mensional and three-dimensgional inverse problems in unbounded and semibounded spaces. Finally, it
should be noted that approximate analytic solutions of these problems can be constructed by adopting as a
basis the system of trigonometric functions ¥ ={1, {sini, cosigj~ ;}, which permit an approximation of any
continuous functions on an integral of length 2m.

These algorithms were used in an ALGOL program for a BESM-4 computer and tested for several
models. The solutions for small values of L were found to be very stable with respect to errors in the
initial data. This circumstance is illustrated by the following typical example of the solution of inverse
problem (7), (8) through the use of both polynomial and trigonometric approximations.

The theoretical distribution Cy{%) is part of a Fourier series defined on the interval (=, 7). The
values of C{x) due to this distribution and the value of ¢ = 0.75 were calculated at the mesh points of a uni-
form net on the basis of Eq. (7) and high~precision quadratic equations. The influence of a random compo~
nent on C(x) was simulated by imposing log-normally distributed random numbers, taken from [7], on the
actual values C(x). Then the computer searched for C§() in the classes of trigonometric and algebraic
polynomials by the algorithm described above. The parameter was determined from the condition Cy(2.65) =
0.8 arbitrary unit. The optimum number of parameters of the approximating polynomials was chosen on
the basis of the criterion proposed in [8]. Figure 1 clearly demonstrates that the selected function C’; (&)
and C; (¢) agree well with the desired function.

NOTATION
a is the thermal diffusivity;
T is the temperature;
C is the concentration;
D ig the diffusion coefficient;
(x) is the initial temperature distributions;
Cy is the initial concentration distribution;
X is the coordinate;
T is the time.
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