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An algorithm is given for an approximate analytic solution of the unsteady inverse heat-conduc-  
tion problem for infinite and semi-infinite objects.  The solution found in this manner  is used 
to solve a special  inverse problem of free diffusion. 

The number of heat-conduction problems,  both forward and inverse,  which can be solved in finite 
form is ex t remely  limited. This c i rcumstance  prevents the widespread use of analytic methods for  ap- 
proximately solving the inverse problem; in cer ta in  cases  these methods great ly  simplify the calculation 
process .  Consequently, there is definite in teres t  in searching for new exact  solutions of the inverse prob- 
lems.  

In the present  paper  we are concerned with the analytic solution of two inverse problems.  The f i rs t  
deals with the c lass ica l  type of inverse heat-conduction problems [2]; the second a r i ses  in the solution of 
problems of diffuse scat ter ing and is of a specialized nature.  However, by virtue of the analogy between 
heat conduction and diffusion, the resul ts  can be automatically applied to the s imi la r  heat-conduction prob- 
lem. 

For  simplicity we res t r i c t  the analysis  to the l inear case.  We first  outline the analytic method for 
approximately finding the tempera ture  T(x, 70) = f(x) within an infinite heat-insulating rod at any time T O 
< T on the basis of a specified tempera ture  distribution T(x, T) at t ime I-, assuming that the thermal  dif-  
fusivity a is a known constant and that there  are  no heat sources .  For  this purpose we f irs t  examine the 
corresponding direct  problem: that of determining the temperature  T(x, T) at time "i from the known t em-  
pera ture  distr ibution at an ear l ie r  t ime v 0 (without any loss of general i ty  we can assume T = 0 as we do 
below). The solution of t h i sp rob l em,  according to [3], is given by the integral equation 

oo 

t [ 1/4~- ~ -  [ (~) exp d~. (1) 
�9 4aw 

An approximate solution of this problem can be constructed with the help of a convenient approximation of 
the function f(0: 

L 

[ (~) = X A,,~ (~). (2) 
n ~ 0  

Now (1) is integrable in t e rms  of e lementary  functions. From the mathematical  standpoint the system 
~' = {~i(~ }i= 0 should be chosen such that the function in (2) can be used, with an appropriate choice of the 
number  L of real pa ramete r s  A n in this faction and with an appropriate choice of the values of these pa ram-  
e ters ,  to achieve an a rb i t r a r i l y  exact  descript ion of any temperature  distribution f(0. This requirement  is 
satisfied, e.g., by the sys tem of algebraic monomials  

= W},=o ,  (3) 

whose l inear shells 

L 

P(~)= X A-~" (4) 
u = O  
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give a uniform approximation of any continuous function. Assuming f(~) = P(~) and using the tabulated equa- 
tions of [4], we write the integral representat ion in (1) and the function T in the finite form 

L 

Tp (x, T) = T (x, "~) lf=p = ~.~ A,~cp,~ (x, r (5) 
t l~O 

where 

6 = 

q)n (X, (Y) = 2  ( 6n ~- 2i)(2)~-- 2i - -  1)!!cv'~(;~-i)XS+2~; 
i = O  

, ~ = 1 / ~ 2 ~ ;  )~ = E ; E (k)  - -  e n t i e r  (k) ;  
1, n - -  for n odd 

( - - l ) ~  = 1. 

(6) 

The algori thm for the approximate solution of this inverse problem is based on the solution of (5) for 
the forward problem and is ex t remely  simple.  We specify a sufficiently high order  L and approximate the 
function T(x, ~) by the polynomial Tp(x,  T) with the neces sa ry  accuracy .  Then the coefficients of the re-  
sulting polynomial are  s imultaneously the corresponding coefficients of the polynomial P(~) with the neces -  
s a r y  accuracy .  Then the coefficients of the result ing polynomial are simultaneously the corresponding 
coefficients of the polynomial P(~), completely  determining it in the l inear combination (4). 

The uniqueness of the solution in the c lass  of polynomials is obvious. We turn now to the solution of 
the following inverse problem. We replace T, f, and a by C, C 0, and D, respect ively ,  adopting the standard 
notation of diffusion theory.  Then Eq. (1) descr ibes  the free one-dimensional  diffusion of a mater ia l  in an 
unbounded space, while the quantity o = ~ represen t s  the mean square distance of par t ic les  which have 
undergone diffusion for  a time 7 from the i r  initial position. We fur ther  assume that z is not known but that, 
along with the distr ibution C(x, a), the value of the unknown function C0(~) is given at some point ~0 on the 
interval  ( -~,  ~). The mathematical  formulation of this problem is as follows: We are to find the solution of 
the integral equation 

1 
C(x, or)- , _ ~  ~ C O (~)exp [ (~ --2(1 ~" x)2 ] t d~ (7) 

J 
- -oo  

with the unknown p a r a m e t e r  z under the condition 

C0 (~o) = C(~ ~0 E (--~, ~). (S) 

This unusual formulation of the inverse problem has found important applications in interpreting the diffuse 
halos which develop on flat and convex slopes above deposits of rare and nonferrous metals [5, 6]. In this 
case the known distribution C(x, e) of the chemical element in question in recent porous formations is used 
to predict the distribution'of this element in early bedrock, C0(~). Sampling of a natural or artificial out- 
crop of this bedrock at some point yields the value of C(~ The parameter e is not known to the investiga- 
tor. 

The solution of the problem is great ly  complicated by the uncertainty regarding the pa ramete r  z, 
which appears  in Eq. (7) in a nonlinear  manner.  This c i rcumstance  makes it nece s sa ry  to c a r r y  out a 
special  study of the s ingle-valuedness  of the solution and, in par t icular ,  hinders a numerica l  solution of 
Eq. (7) by the known regular izat ion methods. The iterative method for  seeking a solution by the net meth-  
od, with variat ion of a over  some plausible range, on the other hand, is ex t remely  laborious.  Fu r the rmore ,  
replacement  of the original opera tor  by an approximating opera to r  introduces a large e r r o r  into the resul t  
of the solution of the inverse problem. 

We will also examine the s ingle-valuedness  of the solution of problem (7), (8) in the class of algebraic 
polynomials,  and in this connection we will give an efficient algorithm for  an approximate analytic solution 
for this problem based on the polynomial approximation (4) of the unknown function C0(~). At f i rs t  we simply 
note that, without res t r ic t ion  (8), Eq. (7) has an infinite set of solutions. The two different polynomials 

L1 L:~ 

i=0 i=0 
(9) 

515 



S 
-3 

A A  

c(x), ca(~,), ca (~.) 

8 

-2 - !  0 

! 
_.0._..0__ 2 

-YT-  

Fig.  1. I l l u s t r a t i ve  solut ion  of p r o b l e m  (7), (8) (in a r b i t r a r y  units).  
1) T h e o r e t i c a l  c o n c e n t r a t i o n  d i s t r i bu t ion  C0(~) ; 2) t h e o r e t i c a l  concen -  
t r a t i o n  d i s t r i bu t ion  C(x); 3) " o b s e r v e d "  d i s t r i bu t ion  fol lowing concen -  
t r a t i o n s  C(x) ;  4) a l g e b r a i c  po lynomia l  C~(0 (a = 0.52) which is the 
o p t i m u m  a p p r o x i m a t i o n  of the funct ion C0(~); 5) t r i g o n o m e t r i c  po ly-  
nomia l  C~(~) (~= 0.58) which is  the op t imum a p p r o x i m a t i o n  of the func-  
t ion C0(~). 

a r e  mapped  by in tegra l  t r a n s f o r m a t i o n  (7) into the s a m e  funct ion C(x) if and only if 

r~ = L 1 = L, a~) --~ A~), Ak~, ----- A[2Z,, 

(2k  + " 
A~I, A ~ 2 , + ~ \  ] l ) ( 2 k _  l~,, ~A,2, . ,~2k_ ~(1, ,12k = k = l  - ] ' "  "--2k+i v2 "*2k+iVl ) '  ( 1 - 0 )  

~ = E  ( ~ - J ) ,  ] = L - - 2 ,  L - - 3  . . . . .  2, 1, O. 

R e c u r r e n c e  r e l a t i o n s  (10) d e t e r m i n e  a n o n d e n u m e r a b l e  f a m i l y  of solut ions  of Eq. (7). 

We now a s s u m e  tha t  C0(~) be longs  to the c l a s s  of a l g e b r a i c  p o l y n o m i a l s  and tha t  the ini t ial  data  C(x) 
and C o a r e  not  "burdened"  with a r a n d o m  componen t .  Without  any l o s s  of g e n e r a l i t y  we can  a l so  a s s u m e  
tha t  we know the d e g r e e  L of po lynomia l  C0(~). Speci fy ing an a r b i t r a r y  va lue  a = a 0 > 0, we expand the func-  
t ion C(x) in t e r m s  of the componen t s  Cn(X, ~0) (n = 0, L) without  a r e s i due ,  and we d e t e r m i n e  the unique 
solut ion  C0(~, ~0) of Eq.  (7) fo r  a f ixed va lue  of e. In g e n e r a l ,  the c u r v e  C0(~, a0) does  not  p a s s  th rough  the 
point  (~0, C(~ and thus is  not a so lu t ion  of p r o b l e m  (7), (8); we denote  th i s  solut ion by C0(~, ~), and we de -  
note  the  coe f f i c i en t s  of the po lynomia l  C0(~, ~r) by Bi(a) .  Then  we have  the equat ion 

L 

X ~ (B~ (c~) - -  A i (Clo)) + C O (~o, no) - -  C(~ = O. (11) 
i-------O 

Using r e c u r r e n c e  r e l a t i o n s  (10) w e  can e x p r e s s  the unknowns Bi  in t e r m s  of a and the known quant i t ies  
Ai(a9) and a 0. Then Eq. (11) is  an equation for  the p a r a m e t e r  a and can be t r a n s f o r m e d  a f t er  s o m e  m a n i -  
pulation to the form 

. W r a a "  = O, (1;8) z . ~  

m ~ O  

whe re  

( L 

[ ~  ~ cs~.~ - -  A (no)) + Co (~o, %) - -  CCO~, m = o, X 0 n 
n~-O 

W m  = { L--2m 

~ s(~o~ ~4, " >  I, 
n ~ O  
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[P~, t = 0 ,  
t 

P~+~t " .~ (--1)iR,,i, 1 ~ t ~< Z (v) - -  1, 

"r 

A L ~  (--I)~K i, (L--  n) - -  even 

[ E(~)~l 
AL_ I N~ (--1)iKi, ( L - - n ) - - o d d  

QE(, , ) , . ,  i = O, 

ql(Qi,.,), i =  1, 

qi (Ti,~ (Ti,3("" (T i , i -1  (Ti,i (Qii,n)))'' ")))' i ~ l ,  

] Qt,,~, i = 1, 
Rt,~ = P',~ (Qi. ~) ' i = 2, 

Pt,i (Ti,i (Ti,, (" " (Ti,i-1 (Ti,i (Qh,n)))' i >2, 

) 

i 
I 

i 
t = E(~) ,  

Here Ti, s, Pt,i, and qi are  summation opera tors ,  

Ti, 8 (u) = i=~ QiS-'-}8+' n+-~ 2~:-:~s u, 

Pt,i (U) = ~ Qt_i_h+2.n+9_i,+2i_4 u, 
�9 j 2 ~ 1  

E(v)--i 

qi (u)= ~ Qe(,O-i-A+Ln+2i,+2i-~_u, 
/,=I 

so that Rt, i and K i are  finite chains of the enclosed sums,  in which the upper l imit  on the sumn~tion in each 
sum is set  by the running value of the summation index of the preceding sum: 

o. L-n2 
\ ] S k=l 

Equation (12) is a lgebraic .  Let  us determine its positive roots;  there are  no more  than E (L/2) of 
them, and any one of them is the desi red result .  We substitute the values found for a into recur rence  re la-  
tions (10) and find a f in i te 'number  of solutions of problem (7), (8). Discarding some of these solutions on 
physical  grounds [the concentration of the mater ia l  over  the interval (_~o, =o) being steadied is nonnegative 
and does not exceed 100%],we find that in general  there are  N-< E (L/2) equiprobable solutions of Eq. (7) 
under condition (8). 

Accordingly,  even if we know the value of the desired concentrat ion C0(0 at some point ~0, we do not 
eliminate the ambiguity from the solution of problem (7), (8). However, condition (8) does significantly re -  
s t r ic t  the spectrum of solutions of Eq. (7), permit t ing us to distinguish from the nondenumerable set of such 
solutions a finite number  (perhaps only one). 

It is not difficult to see that in addition to proving the boundedness of the solution of (7), (8) in the 
c lass  of polynomials  we have also studied an efficient algorithm for  seeking an approximate analytic solu- 
tion of this problem. This algorithm requi res  s imply a single solution of Eq. (7); then the entire spect rum 
of allowed values of C~ (0 is determined as consist ing of the roots of an algebraic equation. To find the 
corresponding values of the approximating functions C (x) on the other  hand, it is not neces sa ry  to solve 
Eq. (7). It is s imply n e c e s s a r y  to emphasize that in pract ice  the function C(x) is usually specified in a d is -  
crete  manner ,  so that the o rde r  L of the approximating polynomial C~(0 is bounded [if only by the number  
of points at which C(x) is measured] .  F u r t h e r m o r e ,  the function C(x) contains a random component,  and the 
desired distr ibution Co( 0 is, genera l ly  speaking, not a polynomial.  Hence we can draw the following con-  
clusions: 
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1) Equation (12) may not contain solutions sa t is factory for  our  purposes (N = 0). In this case we can 
choose that branch of the solution of Eq. (7) which is c loses t  to C (~ at the point ~0 as the des i red  solution. 

2) On the other hand, there may be more  than one possible solution (N > 1). In this case a unique solu-  
tion can be chosen by imposing, e.g. ,  the requirement :  that the solution be smooth. 

3) Since the c lass  of algebraic polynomials does not exhaust the set of all continuous functions, the 
algorithm descr ibed here  for  approximately solving problem (6), (7) should be classif ied as one of the so-  
cMled algori thms for solving the inverse problem by the t r im and e r r o r  method; such algori thms permit  
us to seek at least  one (but not neces sa r i l y  all) of the solutions of the problem. 

4) Since the inverse heat-conduction problem is incor rec t  in the Hadamard sense,  an increase  in the 
degree of the polynomial approximating the input function C(x) leads to the absence of a continuous de-  
pendence of the solution on the input data. In this case the result ing solution must  be regular ized,  as 
shown, e.g., by Alifanov [1]. 

Without any par t icu lar  difficulty the resul ts  obtained above can be general ized to the cases  of two-di-  
mensional and three-dimensional  inverse problems in unbounded and semibounded spaces .  Finally,  it 
should be noted that approximate analytic solutions of these problems can be constructed by adopting as a 
basis the syste m of t r igonometr ic  functions �9 = {1, {sin i~, cos i~]i~= l}, which permit  an approximation of any 
continuous functions on an integral of length 2~. 

These algori thms were used in an ALGOL program for  a B]~SM-4 computer  and tested for  several  
models.  The solutions for small  values of L were found to be ve ry  stable with respect  to e r r o r s  in the 
initial data. This c i rcumstance  is i l lustrated by the following typical example of the solution of inverse 
problem (7), (8) through the use of both polynomial and t r igonometr ic  approximations.  

The theoretical  distribution C0(~) is par t  of a Four ie r  ser ies  defined on the interval ( -u ,  ~). The 
values of C(x) due to this distr ibution and the value of a = 0.75 were calculated at the mesh  points of a uni- 
form net on the basis of Eq. (7) and high-precis ion quadratic equations. The influence of a random compo- 
nent on C(x) was simulated by imposing log-normal ly  distributed random numbers ,  taken f rom [7], on the 
actual values C(x). Then the computer  searched for  C~'(~) in the c lasses  of t r igonometr ic  and algebraic  
polynomials by the algori thm descr ibed above. The pa ramete r  was determined f rom the condition C0(2.65) = 
0.8 a rb i t r a ry  unit. The optimum number of pa rame te r s  of the approximating polynomials was chosen on 

the basis of the cr i ter ion proposed in [8]. Figure 1 c lear ly  demonst ra tes  that the selected function C~(~) 
and C~ (~) agree well with the des i red  function. 

a 

T 
C 
D 
(x) 
Co 
x 
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NOTATION 

is the thermal  diffusivity; 
is the temperature ;  
is the concentration; 
ts the diffusion coefficient; 
,s the initial t empera ture  distr ibutions;  
~s the initial concentration distribution; 
~s the coordinate; 
is the time. 
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